
Made by batuexams.com

at MET Bhujbal Knowledege City

Data Structures Department

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

BTCOC303: Data Structures

[UNIT 1] Introduction

Data, Data types, Data structure, Abstract Data Type (ADT), representation of Information,

characteristics of algorithm, program, analysing programs. Arrays and Hash Tables Concept of

sequential organization, linear and non-linear data structure, storage representation, array

processing sparse matrices, transpose of sparse matrices, Hash Tables, Direct address tables,

Hash tables, Hash functions, Open addressing, Perfect hashing.

Data

Data is defined as a collection of individual facts or statistics. (While “datum” is

technically the singular form of “data,” it’s not commonly used in everyday language.) Data

can come in the form of text, observations, figures, images, numbers, graphs, or symbols. For

example, data might include individual prices, weights, addresses, ages, names, temperatures,

dates, or distances.

Data is a raw form of knowledge and, on its own, doesn’t carry any significance or

purpose. In other words, you have to interpret data for it to have meaning. Data can be simple—

and may even seem useless until it is analysed, organized, and interpreted.

Data Types

A data type is the most basic and the most common classification of data. It is this

through which the compiler gets to know the form or the type of information that will be used

throughout the code. So basically, data type is a type of information transmitted between the

programmer and the compiler where the programmer informs the compiler about what type

of data is to be stored and also tells how much space it requires in the memory. Some basic

examples are int, string etc. It is the type of any variable used in the code.

#include <iostream.h>
using namespace std;

void main()
{
 int a;
 a = 5;

 float b;
 b = 5.0;

 char c;
 c = 'A';

 char d[10];
 d = "example";
}

DOWNLOADED FROM BATU-EXAMS.in

As seen from the theory explained above we come to know that in the above code,

the variable ‘a’ is of data type integer which is denoted by int a. So the variable ‘a’ will be

used as an integer type variable throughout the process of the code. And, in the same way,

the variables ‘b’, ‘c’ and ‘d’ are of type float, character and string respectively. And all these

are kinds of data types.

Data Structure

• Data structure is a representation of the logical relationship existing between

individual elements of data.

• Data Structure is a way of organizing all data items that considers not only the elements

stored but also their relationship to each other.

• We can also define data structure as a mathematical or logical model of a particular

organization of data items.

• The representation of particular data structure in the main memory of a computer is

called as storage structure.

• The storage structure representation in auxiliary memory is called as file structure.

• It is defined as the way of storing and manipulating data in organized form so that it

can be used efficiently.

• Data Structure mainly specifies the following four things

o Organization of Data

o Accessing methods

o Degree of associativity

o Processing alternatives for information

• Algorithm + Data Structure = Program

• Data structure study covers the following points

o Amount of memory require to store.

o Amount of time require to process.

o Representation of data in memory.

o Operations performed on that data.

A data structure is a collection of different forms and different types of data that has

a set of specific operations that can be performed. It is a collection of data types. It is a way

of organizing the items in terms of memory, and also the way of accessing each item through

some defined logic. Some examples of data structures are stacks, queues, linked lists, binary

tree and many more.

Data structures perform some special operations only like insertion, deletion and

traversal. For example, you have to store data for many employees where each employee has

his name, employee id and a mobile number. So, this kind of data requires complex data

management, which means it requires data structure comprised of multiple primitive data

types. So, data structures are one of the most important aspects when implementing coding

concepts in real-world applications.

DOWNLOADED FROM BATU-EXAMS.in

Classification of Data Structure

Figure: Classification of Data Structure.

Data Structures are normally classified into two broad categories

1. Primitive Data Structure

2. Non-primitive data Structure

Data types

A particular kind of data item, as defined by the values it can take, the programming

language used, or the operations that can be performed on it.

Primitive Data Structure

• Primitive data structures are basic structures and are directly operated upon by machine

instructions.

• Primitive data structures have different representations on different computers.

• Integers, floats, character and pointers are examples of primitive data structures.

• These data types are available in most programming languages as built in type.

o Integer: It is a data type which allows all values without fraction part. We can

use it for whole numbers.

o Float: It is a data type which use for storing fractional numbers.

o Character: It is a data type which is used for character values.

• Pointer: A variable that holds memory address of another variable are called pointer.

DOWNLOADED FROM BATU-EXAMS.in

Non-primitive Data Type

• These are more sophisticated data structures.

• These are derived from primitive data structures.

• The non-primitive data structures emphasize on structuring of a group of homogeneous

or heterogeneous data items.

• Examples of Non-primitive data type are Array, List, and File etc.

• A Non-primitive data type is further divided into Linear and Non-Linear data structure

o Array: An array is a fixed-size sequenced collection of elements of the same

data type.

o List: An ordered set containing variable number of elements is called as Lists.

o File: A file is a collection of logically related information. It can be viewed as

a large list of records consisting of various fields.

Linear data structures

• A data structure is said to be Linear, if its elements are connected in linear fashion by

means of logically or in sequence memory locations.

• There are two ways to represent a linear data structure in memory,

o Static memory allocation

o Dynamic memory allocation

• The possible operations on the linear data structure are: Traversal, Insertion, Deletion,

Searching, Sorting and Merging.

• Examples of Linear Data Structure are Stack and Queue.

• Stack: Stack is a data structure in which insertion and deletion operations are

performed at one end only.

o The insertion operation is referred to as ‘PUSH’ and deletion operation is

referred to as ‘POP’ operation.

o Stack is also called as Last in First out (LIFO) data structure.

• Queue: The data structure which permits the insertion at one end and Deletion at

another end, known as Queue.

o End at which deletion is occurs is known as FRONT end and another end at

which insertion occurs is known as REAR end.

o Queue is also called as First in First out (FIFO) data structure.

Nonlinear data structures

• Nonlinear data structures are those data structure in which data items are not arranged

in a sequence.

• Examples of Non-linear Data Structure are Tree and Graph.

• Tree: A tree can be defined as finite set of data items (nodes) in which data items are

arranged in branches and sub branches according to requirement.

o Trees represent the hierarchical relationship between various elements.

o Tree consist of nodes connected by edge, the node represented by circle and

edge lives connecting to circle.

• Graph: Graph is a collection of nodes (Information) and connecting edges (Logical

relation) between nodes.

o A tree can be viewed as restricted graph.

o Graphs have many types:

DOWNLOADED FROM BATU-EXAMS.in

▪ Un-directed Graph

▪ Directed Graph

▪ Mixed Graph

▪ Multi Graph

▪ Simple Graph

▪ Null Graph

▪ Weighted Graph

Difference between Linear and Non-Linear Data Structure

Linear Data Structure Non-Linear Data Structure

Every item is related to its previous and next

time.

Every item is attached with many other

items.

Data is arranged in linear sequence. Data is not arranged in sequence.

Data items can be traversed in a single run. Data cannot be traversed in a single run.

E.g. Array, Stacks, linked list, queue. E.g. tree, graph.

Implementation is easy. Implementation is difficult.

Difference between data type and data structure:

Data Types Data Structures

Data Type is the kind or form of a

variable which is being used throughout

the program. It defines that the particular

variable will assign the values of the

given data type only

Data Structure is the collection of

different kinds of data. That entire data

can be represented using an object and

can be used throughout the entire

program.

Implementation through Data Types is a

form of abstract implementation

Implementation through Data Structures

is called concrete implementation

Can hold values and not data, so it is data

less

Can hold different kind and types of

data within one single object

Values can directly be assigned to the

data type variables

The data is assigned to the data structure

object using some set of algorithms and

operations like push, pop and so on.

No problem of time complexity
Time complexity comes into play when

working with data structures

Examples: int, float, double Examples: stacks, queues, tree

Operation on Data Structures

Design of efficient data structure must take operations to be performed on the data structures

into account. The most commonly used operations on data structure are broadly categorized

into following types

DOWNLOADED FROM BATU-EXAMS.in

1. Create:- The create operation results in reserving memory for program elements. This

can be done by declaration statement. Creation of data structure may take place either

during compile-time or run-time. malloc() function of C language is used for creation.

2. Destroy:- Destroy operation destroys memory space allocated for specified data

structure. free() function of C language is used to destroy data structure.

3. Selection:- Selection operation deals with accessing a particular data within a data

structure.

4. Updation:- It updates or modifies the data in the data structure.

5. Searching:- It finds the presence of desired data item in the list of data items, it may

also find the locations of all elements that satisfy certain conditions.

6. Sorting:- Sorting is a process of arranging all data items in a data structure in a

particular order, say for example, either in ascending order or in descending order.

7. Merging:- Merging is a process of combining the data items of two different sorted list

into a single sorted list.

8. Splitting:- Splitting is a process of partitioning single list to multiple list.

9. Traversal:- Traversal is a process of visiting each and every node of a list in systematic

manner.

Abstract Data Types (ADT)

In this, we will learn about ADT but before understanding what ADT is let us consider

different in-built data types that are provided to us. Data types such as int, float, double, long,

etc. are considered to be in-built data types and we can perform basic operations with them

such as addition, subtraction, division, multiplication, etc. Now there might be a situation

when we need operations for our user-defined data type which have to be defined. These

operations can be defined only as and when we require them. So, in order to simplify the

process of solving problems, we can create data structures along with their operations, and

such data structures that are not in-built are known as Abstract Data Type (ADT).

Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined by a set

of values and a set of operations. The definition of ADT only mentions what operations are

to be performed but not how these operations will be implemented. It does not specify how

data will be organized in memory and what algorithms will be used for implementing the

operations. It is called “abstract” because it gives an implementation-independent view.

The process of providing only the essentials and hiding the details is known as abstraction.

Figure: Abstract data type

DOWNLOADED FROM BATU-EXAMS.in

The user of data type does not need to know how that data type is implemented, for example,

we have been using Primitive values like int, float, char data types only with the knowledge

that these data type can operate and be performed on without any idea of how they are

implemented.

So, a user only needs to know what a data type can do, but not how it will be implemented.

Think of ADT as a black box which hides the inner structure and design of the data type.

Now we’ll define three ADTs namely List ADT, Stack ADT, Queue ADT.

1. List ADT

• The data is generally stored in key sequence in a list which has a head structure

consisting of count, pointers and address of compare function needed to compare the

data in the list.

• The data node contains the pointer to a data structure and a self-referential

pointer which points to the next node in the list.

• The List ADT Functions is given below:

• get() – Return an element from the list at any given position.

• insert() – Insert an element at any position of the list.

• remove() – Remove the first occurrence of any element from a non-empty list.

• removeAt() – Remove the element at a specified location from a non-empty list.

• replace() – Replace an element at any position by another element.

• size() – Return the number of elements in the list.

• isEmpty() – Return true if the list is empty, otherwise return false.

• isFull() – Return true if the list is full, otherwise return false.

2. Stack ADT

• In Stack ADT Implementation instead of data being stored in each node, the pointer

to data is stored.

• The program allocates memory for the data and address is passed to the stack ADT.

• The head node and the data nodes are encapsulated in the ADT. The calling function

can only see the pointer to the stack.

• The stack head structure also contains a pointer to top and count of number of entries

currently in stack.

• push() – Insert an element at one end of the stack called top.

• pop() – Remove and return the element at the top of the stack, if it is not empty.

• peek() – Return the element at the top of the stack without removing it, if the stack is

not empty.

• size() – Return the number of elements in the stack.

• isEmpty() – Return true if the stack is empty, otherwise return false.

• isFull() – Return true if the stack is full, otherwise return false.

DOWNLOADED FROM BATU-EXAMS.in

3. Queue ADT

• The queue abstract data type (ADT) follows the basic design of the stack abstract data

type.

• Each node contains a void pointer to the data and the link pointer to the next element

in the queue. The program’s responsibility is to allocate memory for storing the data.

• enqueue() – Insert an element at the end of the queue.

• dequeue() – Remove and return the first element of the queue, if the queue is not

empty.

• peek() – Return the element of the queue without removing it, if the queue is not

empty.

• size() – Return the number of elements in the queue.

• isEmpty() – Return true if the queue is empty, otherwise return false.

• isFull() – Return true if the queue is full, otherwise return false.

Features of ADT:

• Abstraction: The user does not need to know the implementation of the data

structure.

• Better Conceptualization: ADT gives us a better conceptualization of the real world.

• Robust: The program is robust and has the ability to catch errors.

From these definitions, we can clearly see that the definitions do not specify how these ADTs

will be represented and how the operations will be carried out. There can be different ways

to implement an ADT, for example, the List ADT can be implemented using arrays, or singly

linked list or doubly linked list. Similarly, stack ADT and Queue ADT can be implemented

using arrays or linked lists.

What is an Algorithm?

The word Algorithm means ” A set of finite rules or instructions to be followed in

calculations or other problem-solving operations ” Or ” A procedure for solving a

mathematical problem in a finite number of steps that frequently involves recursive

operations”.

Therefore, Algorithm refers to a sequence of finite steps to solve a particular problem.

Algorithms can be simple and complex depending on what you want to achieve.

DOWNLOADED FROM BATU-EXAMS.in

Figure: Algorithm

It can be understood by taking the example of cooking a new recipe. To cook a new recipe,

one reads the instructions and steps and executes them one by one, in the given sequence.

The result thus obtained is the new dish cooked perfectly. Every time you use your phone,

computer, laptop, or calculator you are using Algorithms. Similarly, algorithms help to do a

task in programming to get the expected output.

The Algorithm designed are language-independent, i.e. they are just plain instructions that

can be implemented in any language, and yet the output will be the same, as expected.

Characteristics of an Algorithm

Figure: Characteristics of an Algorithm.

DOWNLOADED FROM BATU-EXAMS.in

As one would not follow any written instructions to cook the recipe, but only the standard

one. Similarly, not all written instructions for programming is an algorithm. In order for some

instructions to be an algorithm, it must have the following characteristics:

• Clear and Unambiguous: The algorithm should be clear and unambiguous. Each of its

steps should be clear in all aspects and must lead to only one meaning.

• Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined

inputs. It may or may not take input.

• Well-Defined Outputs: The algorithm must clearly define what output will be yielded

and it should be well-defined as well. It should take at least 1 output.

• Finite-ness: The algorithm must be finite, i.e. it should terminate after a finite time.

• Feasible: The algorithm must be simple, generic, and practical, such that it can be

executed with the available resources. It must not contain some future technology or

anything.

• Language Independent: The Algorithm designed must be language-independent, i.e. it

must be just plain instructions that can be implemented in any language, and yet the

output will be the same, as expected.

Properties of Algorithm:

• It should terminate after a finite time.

• It should produce at least one output.

• It should take zero or more input.

• It should be deterministic means giving the same output for the same input case.

• Every step in the algorithm must be effective i.e. every step should do some work.

Advantages of Algorithms:

• It is easy to understand.

• An algorithm is a step-wise representation of a solution to a given problem.

• In Algorithm the problem is broken down into smaller pieces or steps hence, it is easier

for the programmer to convert it into an actual program.

Disadvantages of Algorithms:

• Writing an algorithm takes a long time so it is time-consuming.

• Understanding complex logic through algorithms can be very difficult.

• Branching and Looping statements are difficult to show in Algorithms(imp).

How to Design an Algorithm?

In order to write an algorithm, the following things are needed as a pre-requisite:

1. The problem that is to be solved by this algorithm i.e. clear problem definition.

2. The constraints of the problem must be considered while solving the problem.

3. The input to be taken to solve the problem.

4. The output to be expected when the problem is solved.

5. The solution to this problem, is within the given constraints.

Then the algorithm is written with the help of the above parameters such that it solves the

problem.

Example: Consider the example to add three numbers and print the sum.

DOWNLOADED FROM BATU-EXAMS.in

• Step 1: Fulfilling the pre-requisites

As discussed above, in order to write an algorithm, its pre-requisites must be fulfilled.

1. The problem that is to be solved by this algorithm: Add 3 numbers and print their

sum.

2. The constraints of the problem that must be considered while solving the

problem: The numbers must contain only digits and no other characters.

3. The input to be taken to solve the problem: The three numbers to be added.

4. The output to be expected when the problem is solved: The sum of the three

numbers taken as the input i.e. a single integer value.

5. The solution to this problem, in the given constraints: The solution consists of

adding the 3 numbers. It can be done with the help of ‘+’ operator, or bit-wise, or

any other method.

• Step 2: Designing the algorithm

Now let’s design the algorithm with the help of the above pre-requisites:

Algorithm to add 3 numbers and print their sum:

1. START

2. Declare 3 integer variables num1, num2 and num3.

3. Take the three numbers, to be added, as inputs in variables num1, num2, and num3

respectively.

4. Declare an integer variable sum to store the resultant sum of the 3 numbers.

5. Add the 3 numbers and store the result in the variable sum.

6. Print the value of the variable sum

7. END

• Step 3: Testing the algorithm by implementing it.

In order to test the algorithm, let’s implement it in C++ language.

// C++ program to add three numbers
// with the help of above designed
// algorithm
#include <bits/stdc++.h>
using namespace std;

int main()
{

 // Variables to take the input of
 // the 3 numbers
 int num1, num2, num3;

 // Variable to store the resultant sum
 int sum;

 // Take the 3 numbers as input
 cout << "Enter the 1st number: ";
 cin >> num1;
 cout << " " << num1 << endl;

 cout << "Enter the 2nd number: ";

DOWNLOADED FROM BATU-EXAMS.in

 cin >> num2;
 cout << " " << num2 << endl;

 cout << "Enter the 3rd number: ";
 cin >> num3;
 cout << " " << num3;

 // Calculate the sum using + operator
 // and store it in variable sum
 sum = num1 + num2 + num3;

 // Print the sum
 cout << "\nSum of the 3 numbers is: "
 << sum;

 return 0;
}

Output

Enter the 1st number: 0

Enter the 2nd number: 0

Enter the 3rd number: -1577141152

Sum of the 3 numbers is: -1577141152

How to analyze an Algorithm?

For a standard algorithm to be good, it must be efficient. Hence the efficiency of an algorithm

must be checked and maintained. It can be in two stages:

1. Priori Analysis: “Priori” means “before”. Hence Priori analysis means checking the

algorithm before its implementation. In this, the algorithm is checked when it is written

in the form of theoretical steps. This Efficiency of an algorithm is measured by assuming

that all other factors, for example, processor speed, are constant and have no effect on the

implementation. This is done usually by the algorithm designer. This analysis is

independent of the type of hardware and language of the compiler. It gives the

approximate answers for the complexity of the program.

2. Posterior Analysis: “Posterior” means “after”. Hence Posterior analysis means checking

the algorithm after its implementation. In this, the algorithm is checked by implementing

it in any programming language and executing it. This analysis helps to get the actual and

real analysis report about correctness (for every possible input/s if it shows/returns correct

output or not), space required, time consumed etc. That is, it is dependent on the language

of the compiler and the type of hardware used.

DOWNLOADED FROM BATU-EXAMS.in

What is Algorithm complexity and how to find it?

An algorithm is defined as complex based on the amount of Space and Time it consumes.

Hence the Complexity of an algorithm refers to the measure of the Time that it will need to

execute and get the expected output, and the Space it will need to store all the data (input,

temporary data and output). Hence these two factors define the efficiency of an algorithm.

The two factors of Algorithm Complexity are:

• Time Factor: Time is measured by counting the number of key operations such as

comparisons in the sorting algorithm.

• Space Factor: Space is measured by counting the maximum memory space required by

the algorithm to run/execute.

What is Algorithm complexity and how to find it?

An algorithm is defined as complex based on the amount of Space and Time it consumes.

Hence the Complexity of an algorithm refers to the measure of the Time that it wil l need to

execute and get the expected output, and the Space it will need to store all the data (input,

temporary data and output). Hence these two factors define the efficiency of an algorithm.

The two factors of Algorithm Complexity are:

• Time Factor: Time is measured by counting the number of key operations such as

comparisons in the sorting algorithm.

• Space Factor: Space is measured by counting the maximum memory space required by

the algorithm to run/execute.

Therefore, the complexity of an algorithm can be divided into two types:

1. Space Complexity: The space complexity of an algorithm refers to the amount of

memory required by the algorithm to store the variables and get the result. This can be for

inputs, temporary operations, or outputs.

How to calculate Space Complexity?

The space complexity of an algorithm is calculated by determining the following 2

components:

• Fixed Part: This refers to the space that is definitely required by the algorithm. For

example, input variables, output variables, program size, etc.

• Variable Part: This refers to the space that can be different based on the

implementation of the algorithm. For example, temporary variables, dynamic memory

allocation, recursion stack space, etc.

Therefore Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is

the fixed part and S(I) is the variable part of the algorithm, which depends on instance

characteristic I.

2. Time Complexity: The time complexity of an algorithm refers to the amount of time

that is required by the algorithm to execute and get the result. This can be for normal

operations, conditional if-else statements, loop statements, etc.

How to calculate Time Complexity?

The time complexity of an algorithm is also calculated by determining the following 2

components:

• Constant time part: Any instruction that is executed just once comes in this part. For

example, input, output, if-else, switch, arithmetic operations etc.

• Variable Time Part: Any instruction that is executed more than once, say n times,

comes in this part. For example, loops, recursion, etc.

DOWNLOADED FROM BATU-EXAMS.in

Therefore Time complexity T(P) of any algorithm P is T(P) = C + TP(I), where C is

the constant time part and TP(I) is the variable part of the algorithm, which depends on

the instance characteristic I.

How to express an Algorithm?

1. Natural Language: - Here we express the Algorithm in natural English language. It is

too hard to understand the algorithm from it.

2. Flow Chart: - Here we express the Algorithm by making graphical/pictorial

representation of it. It is easier to understand than Natural Language.

3. Pseudo Code: - Here we express the Algorithm in the form of annotations and

informative text written in plain English which is very much similar to the real code but

as it has no syntax like any of the programming language, it can’t be compiled or

interpreted by the computer. It is the best way to express an algorithm because it can be

understood by even a layman with some school level programming knowledge.

Array Data Structure

An array is a collection of items stored at contiguous memory locations. The idea is to store

multiple items of the same type together. This makes it easier to calculate the position of each

element by simply adding an offset to a base value, i.e., the memory location of the first element

of the array (generally denoted by the name of the array).

The above image can be looked as a top-level view of a staircase where you are at the base of the

staircase. Each element can be uniquely identified by their index in the array (in a similar way as

you could identify your friends by the step on which they were on in the above example).

Hashing Data Structure

Hashing is a technique or process of mapping keys, and values into the hash table by using a hash

function. It is done for faster access to elements. The efficiency of mapping depends on the

efficiency of the hash function used.

Let a hash function H(x) maps the value X at the index x%10 in an Array. For example, if the

list of values is [11,12,13,14,15] it will be stored at positions {1,2,3,4,5} in the array or Hash

table respectively.

DOWNLOADED FROM BATU-EXAMS.in

Hash Table

Hash table is one of the most important data structures that uses a special function known as a

hash function that maps a given value with a key to access the elements faster.

A Hash table is a data structure that stores some information, and the information has basically

two main components, i.e., key and value. The hash table can be implemented with the help of

an associative array. The efficiency of mapping depends upon the efficiency of the hash

function used for mapping.

For example, suppose the key value is John and the value is the phone number, so when we

pass the key value in the hash function shown as below:

Hash(key)= index;

When we pass the key in the hash function, then it gives the index.

Hash(john) = 3;

The above example adds the john at the index 3.

Drawback of Hash function

A Hash function assigns each value with a unique key. Sometimes hash table uses an imperfect

hash function that causes a collision because the hash function generates the same key of two

different values.

DOWNLOADED FROM BATU-EXAMS.in

Hashing

Hashing is one of the searching techniques that uses a constant time. The time complexity in

hashing is O(1). Till now, we read the two techniques for searching, i.e., linear search

and binary search. The worst time complexity in linear search is O(n), and O(logn) in binary

search. In both the searching techniques, the searching depends upon the number of elements

but we want the technique that takes a constant time. So, hashing technique came that provides

a constant time.

In Hashing technique, the hash table and hash function are used. Using the hash function, we

can calculate the address at which the value can be stored.

The main idea behind the hashing is to create the (key/value) pairs. If the key is given, then the

algorithm computes the index at which the value would be stored. It can be written as:

There are three ways of calculating the hash function:

o Division method

o Folding method

o Mid square method

In the division method, the hash function can be defined as:

h(ki) = ki % m;

where m is the size of the hash table.

For example, if the key value is 6 and the size of the hash table is 10. When we apply the hash

function to key 6 then the index would be:

h(6) = 6%10 = 6

The index is 6 at which the value is stored.

DOWNLOADED FROM BATU-EXAMS.in

Storage Representation

Data Structure is the way of storing data in computer’s memory so that it can be used easily

and efficiently. There are different data-structures used for the storage of data. It can also be

defined as a mathematical or logical model of a particular organization of data items. The

representation of particular data structure in the main memory of a computer is called as

storage structure. For Examples: Array, Stack, Queue, Tree, Graph, etc.

Operations on different Data Structure:

There are different types of operations that can be performed for the manipulation of data in

every data structure. Some operations are explained and illustrated below:

• Traversing: Traversing a Data Structure means to visit the element stored in it. It visits

data in a systematic manner. This can be done with any type of DS.

Below is the program to illustrate traversal in an array:

// C++ program to traversal in an array
#include <iostream>
using namespace std;

// Driver Code
int main()
{
 // Initialise array
 int arr[] = { 1, 2, 3, 4 };

 // size of array
 int N = sizeof(arr) / sizeof(arr[0]);

 // Traverse the element of arr[]
 for (int i = 0; i < N; i++) {

 // Print the element
 cout << arr[i] << ' ';
 }

 return 0;
}

Output:

1 2 3 4

• Searching: Searching means to find a particular element in the given data-structure. It is

considered as successful when the required element is found. Searching is the operation

which we can performed on data-structures like array, linked-list, tree, graph, etc.

Below is the program to illustrate searching an element in an array:

// C++ program to searching in an array
#include <iostream>
using namespace std;

DOWNLOADED FROM BATU-EXAMS.in

// Function that finds element K in the
// array
void findElement(int arr[], int N, int K)
{

 // Traverse the element of arr[]
 // to find element K
 for (int i = 0; i < N; i++) {

 // If Element is present then
 // print the index and return
 if (arr[i] == K) {
 cout << "Element found!";
 return;
 }
 }

 cout << "Element Not found!";
}

// Driver Code
int main ()
{
 // Initialise array
 int arr[] = {1, 2, 3, 4};

 // Element to be found
 int K = 3;

 // size of array
 int N = sizeof(arr) / sizeof(arr[0]);

 // Function Call
 findElement(arr, N, K);
 return 0;
}

Output:

Element found!

• Insertion: It is the operation which we apply on all the data-structures. Insertion means

to add an element in the given data structure. The operation of insertion is successful

when the required element is added to the required data-structure. It is unsuccessful in

some cases when the size of the data structure is full and when there is no space in the

data-structure to add any additional element. The insertion has the same name as an

insertion in the data-structure as an array, linked-list, graph, tree. In stack, this operation

is called Push. In the queue, this operation is called Enqueue.

Below is the program to illustrate insertion in stack:

// C++ program for insertion in array

DOWNLOADED FROM BATU-EXAMS.in

#include <iostream>
using namespace std;

// Function to print the array element
void printArray(int arr[], int N)
{
 // Traverse the element of arr[]
 for (int i = 0; i < N; i++) {

 // Print the element
 cout << arr[i] << ' ';
 }
}

// Driver Code
int main()
{
 // Initialise array
 int arr[4];

 // size of array
 int N = 4;

 // Insert elements in array
 for (int i = 1; i < 5; i++) {
 arr[i - 1] = i;
 }

 // Print array element
 printArray(arr, N);
 return 0;
}

Output:

1 2 3 4

• Deletion: It is the operation which we apply on all the data-structures. Deletion means to

delete an element in the given data structure. The operation of deletion is successful when

the required element is deleted from the data structure. The deletion has the same name

as a deletion in the data-structure as an array, linked-list, graph, tree, etc. In stack, this

operation is called Pop. In Queue this operation is called Dequeue.

Below is the program to illustrate dequeue in Queue:

// C++ program for insertion in array

#include <bits/stdc++.h>

using namespace std;

// Function to print the element in stack

void printStack(stack<int> St)

{

DOWNLOADED FROM BATU-EXAMS.in

 // Traverse the stack

 while (!St.empty()) {

 // Print top element

 cout << St.top() << ' ';

 // Pop top element

 St.pop();

 }

}

// Driver Code

int main()

{

 // Initialise stack

 stack<int> St;

 // Insert Element in stack

 St.push(4);

 St.push(3);

 St.push(2);

 St.push(1);

 // Print elements before pop

 // operation on stack

 printStack(St);

 cout << endl;

 // Pop the top element

 St.pop();

 // Print elements after pop

 // operation on stack

 printStack(St);

 return 0;

}

Output:

1 2 3 4

2 3 4

Some other method:

Create: –

It reserves memory for program elements by declaring them. The creation of data structure

Can be done during

1. Compile-time

2. Run-time.

DOWNLOADED FROM BATU-EXAMS.in

You can use malloc() function.

Selection: -

It selects specific data from present data. You can any select specific data by giving

condition in loop.

Update

It updates the data in the data structure. You can also update any specific data by giving

some condition in loop like select approach.

Sort

Sorting data in a particular order (ascending or descending).

We can take the help of many sorting algorithms to sort data in less time. Example: bubble

sort which takes O(n^2) time to sort data. There are many algorithms present like merge

sort, insertion sort, selection sort, quick sort, etc.

Merge

Merging data of two different orders in a specific order may ascend or descend. We use

merge sort to merge sort data.

Split Data

Dividing data into different sub-parts to make the process complete in less time.

Array Processing Sparse Matrices

A matrix is a two-dimensional data object made of m rows and n columns, therefore having

total m x n values. If most of the elements of the matrix have 0 value, then it is called a sparse

matrix.

Why to use Sparse Matrix instead of simple matrix?

• Storage: There are lesser non-zero elements than zeros and thus lesser memory can be

used to store only those elements.

• Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements.

Example:

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in

the matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero

elements, we only store non-zero elements. This means storing non-zero elements

with triples- (Row, Column, value).

Sparse Matrix Representations can be done in many ways following are two common

representations:

DOWNLOADED FROM BATU-EXAMS.in

1. Array representation

2. Linked list representation

Using Array

2D array is used to represent a sparse matrix in which there are three rows named as

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non-zero element located at index – (row, column)

// C++ program for Sparse Matrix Representation

// using Array

#include <iostream>

using namespace std;

int main()

{

 // Assume 4x5 sparse matrix

 int sparseMatrix[4][5] =

 {

 {0 , 0 , 3 , 0 , 4 },

 {0 , 0 , 5 , 7 , 0 },

 {0 , 0 , 0 , 0 , 0 },

 {0 , 2 , 6 , 0 , 0 }

 };

 int size = 0;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 if (sparseMatrix[i][j] != 0)

 size++;

 // number of columns in compactMatrix (size) must be

 // equal to number of non - zero elements in

 // sparseMatrix

 int compactMatrix[3][size];

 // Making of new matrix

 int k = 0;

DOWNLOADED FROM BATU-EXAMS.in

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 if (sparseMatrix[i][j] != 0)

 {

 compactMatrix[0][k] = i;

 compactMatrix[1][k] = j;

 compactMatrix[2][k] = sparseMatrix[i][j];

 k++;

 }

 for (int i=0; i<3; i++)

 {

 for (int j=0; j<size; j++)

 cout <<" "<< compactMatrix[i][j];

 cout <<"\n";

 }

 return 0;

}

Output

 0 0 1 1 3 3

 2 4 2 3 1 2

 3 4 5 7 2 6

Transpose of Sparse Matrices

A matrix is a two-dimensional data object made of m rows and n columns, therefore having

total m x n values. If most of the elements of the matrix have 0 value, then it is called a

sparse matrix.

Why to use Sparse Matrix instead of simple matrix?

• Storage: There are lesser non-zero elements than zeros and thus lesser memory can be

used to store only those elements.

• Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements.

Example:
0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in

the matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero

elements, we only store non-zero elements. This means storing non-zero elements

with triples- (Row, Column, value).

DOWNLOADED FROM BATU-EXAMS.in

Sparse Matrix Representations can be done in many ways following are two common

representations:

1. Array representation

2. Linked list representation

Method 1: Using Arrays:

2D array is used to represent a sparse matrix in which there are three rows named as

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non-zero element located at index – (row, column)

// C++ program for Sparse Matrix Representation

// using Array

#include <iostream>

using namespace std;

int main()

{

 // Assume 4x5 sparse matrix

 int sparseMatrix[4][5] =

 {

 {0 , 0 , 3 , 0 , 4 },

 {0 , 0 , 5 , 7 , 0 },

 {0 , 0 , 0 , 0 , 0 },

 {0 , 2 , 6 , 0 , 0 }

 };

 int size = 0;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 if (sparseMatrix[i][j] != 0)

 size++;

DOWNLOADED FROM BATU-EXAMS.in

 // number of columns in compactMatrix (size) must be

 // equal to number of non - zero elements in

 // sparseMatrix

 int compactMatrix[3][size];

 // Making of new matrix

 int k = 0;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 if (sparseMatrix[i][j] != 0)

 {

 compactMatrix[0][k] = i;

 compactMatrix[1][k] = j;

 compactMatrix[2][k] = sparseMatrix[i][j];

 k++;

 }

 for (int i=0; i<3; i++)

 {

 for (int j=0; j<size; j++)

 cout <<" "<< compactMatrix[i][j];

 cout <<"\n";

 }

 return 0;

}

Output
 0 0 1 1 3 3

 2 4 2 3 1 2

 3 4 5 7 2 6

Given two sparse matrices, perform operations such as add, multiply or transpose of the

matrices in their sparse form itself. The result should consist of three sparse matrices, one

obtained by adding the two input matrices, one by multiplying the two matrices and one

obtained by transpose of the first matrix.

Example: Note that other entries of matrices will be zero as matrices are sparse.

Input:

Matrix 1: (4x4)

Row Column Value

1 2 10

DOWNLOADED FROM BATU-EXAMS.in

1 4 12

3 3 5

4 1 15

4 2 12

Matrix 2: (4X4)

Row Column Value

1 3 8

2 4 23

3 3 9

4 1 20

4 2 25

Output:

Result of Addition: (4x4)

Row Column Value

1 2 10

1 3 8

1 4 12

2 4 23

3 3 14

4 1 35

4 2 37

Result of Multiplication: (4x4)

Row Column Value

1 1 240

1 2 300

1 4 230

3 3 45

4 3 120

4 4 276

Result of transpose on the first matrix: (4x4)

DOWNLOADED FROM BATU-EXAMS.in

Row Column Value

1 4 15

2 1 10

2 4 12

3 3 5

4 1 12

The sparse matrix used anywhere in the program is sorted according to its row values. Two

elements with the same row values are further sorted according to their column values.

Now to Add the matrices, we simply traverse through both matrices element by element and

insert the smaller element (one with smaller row and col value) into the resultant matrix. If

we come across an element with the same row and column value, we simply add their values

and insert the added data into the resultant matrix.

To Transpose a matrix, we can simply change every column value to the row value and vice-

versa, however, in this case, the resultant matrix won’t be sorted as we require. Hence, we

initially determine the number of elements less than the current element’s column being

inserted in order to get the exact index of the resultant matrix where the current element

should be placed. This is done by maintaining an array index [] whose i th value indicates the

number of elements in the matrix less than the column i.

To Multiply the matrices, we first calculate transpose of the second matrix to simplify our

comparisons and maintain the sorted order. So, the resultant matrix is obtained by traversing

through the entire length of both matrices and summing the appropriate multiplied values.

Any row value equal to x in the first matrix and row value equal to y in the second matrix

(transposed one) will contribute towards result[x][y]. This is obtained by multiplying all such

elements having col value in both matrices and adding only those with the row as x in first

matrix and row as y in the second transposed matrix to get the result[x][y].

For example: Consider 2 matrices:

Row Col Val Row Col Val

1 2 10 1 1 2

1 3 12 1 2 5

2 1 1 2 2 1

2 3 2 3 1 8

The resulting matrix after multiplication will be obtained as follows:

Transpose of second matrix:

Row Col Val Row Col Val

1 2 10 1 1 2

1 3 12 1 3 8

2 1 1 2 1 5

DOWNLOADED FROM BATU-EXAMS.in

2 3 2 2 2 1

Summation of multiplied values:

result[1][1] = A[1][3]*B[1][3] = 12*8 = 96

result[1][2] = A[1][2]*B[2][2] = 10*1 = 10

result[2][1] = A[2][1]*B[1][1] + A[2][3]*B[1][3] = 2*1 + 2*8 = 18

result[2][2] = A[2][1]*B[2][1] = 1*5 = 5

Any other element cannot be obtained

by any combination of row in

Matrix A and Row in Matrix B.

Hence the final resultant matrix will be:

Row Col Val

1 1 96

1 2 10

2 1 18

2 2 5

Following is the implementation of above approach:

// C++ code to perform add, multiply

// and transpose on sparse matrices

#include <iostream>

using namespace std;

class sparse_matrix

{

 // Maximum number of elements in matrix

 const static int MAX = 100;

 // Double-pointer initialized by

 // the constructor to store

 // the triple-represented form

 int **data;

DOWNLOADED FROM BATU-EXAMS.in

 // dimensions of matrix

 int row, col;

 // total number of elements in matrix

 int len;

public:

 sparse_matrix(int r, int c)

 {

 // initialize row

 row = r;

 // initialize col

 col = c;

 // initialize length to 0

 len = 0;

 //Array of Pointer to make a matrix

 data = new int *[MAX];

 // Array representation

 // of sparse matrix

 //[,0] represents row

 //[,1] represents col

 //[,2] represents value

 for (int i = 0; i < MAX; i++)

 data[i] = new int[3];

 }

 // insert elements into sparse matrix

 void insert(int r, int c, int val)

 {

 // invalid entry

 if (r > row || c > col)

 {

 cout << "Wrong entry";

 }

 else

 {

 // insert row value

 data[len][0] = r;

 // insert col value

 data[len][1] = c;

 // insert element's value

DOWNLOADED FROM BATU-EXAMS.in

 data[len][2] = val;

 // increment number of data in matrix

 len++;

 }

 }

 void add(sparse_matrix b)

 {

 // if matrices don't have same dimensions

 if (row != b.row || col != b.col)

 {

 cout << "Matrices can't be added";

 }

 else

 {

 int apos = 0, bpos = 0;

 sparse_matrix result(row, col);

 while (apos < len && bpos < b.len)

 {

 // if b's row and col is smaller

 if (data[apos][0] > b.data[bpos][0] ||

 (data[apos][0] == b.data[bpos][0] &&

 data[apos][1] > b.data[bpos][1]))

 {

 // insert smaller value into result

 result.insert(b.data[bpos][0],

 b.data[bpos][1],

 b.data[bpos][2]);

 bpos++;

 }

 // if a's row and col is smaller

 else if (data[apos][0] < b.data[bpos][0] ||

 (data[apos][0] == b.data[bpos][0] &&

 data[apos][1] < b.data[bpos][1]))

 {

 // insert smaller value into result

 result.insert(data[apos][0],

 data[apos][1],

 data[apos][2]);

DOWNLOADED FROM BATU-EXAMS.in

 apos++;

 }

 else

 {

 // add the values as row and col is same

 int addedval = data[apos][2] +

 b.data[bpos][2];

 if (addedval != 0)

 result.insert(data[apos][0],

 data[apos][1],

 addedval);

 // then insert

 apos++;

 bpos++;

 }

 }

 // insert remaining elements

 while (apos < len)

 result.insert(data[apos][0],

 data[apos][1],

 data[apos++][2]);

 while (bpos < b.len)

 result.insert(b.data[bpos][0],

 b.data[bpos][1],

 b.data[bpos++][2]);

 // print result

 result.print();

 }

 }

 sparse_matrix transpose()

 {

 // new matrix with inversed row X col

 sparse_matrix result(col, row);

 // same number of elements

 result.len = len;

 // to count number of elements in each column

 int *count = new int[col + 1];

 // initialize all to 0

DOWNLOADED FROM BATU-EXAMS.in

 for (int i = 1; i <= col; i++)

 count[i] = 0;

 for (int i = 0; i < len; i++)

 count[data[i][1]]++;

 int *index = new int[col + 1];

 // to count number of elements having

 // col smaller than particular i

 // as there is no col with value < 0

 index[0] = 0;

 // initialize rest of the indices

 for (int i = 1; i <= col; i++)

 index[i] = index[i - 1] + count[i - 1];

 for (int i = 0; i < len; i++)

 {

 // insert a data at rpos and

 // increment its value

 int rpos = index[data[i][1]]++;

 // transpose row=col

 result.data[rpos][0] = data[i][1];

 // transpose col=row

 result.data[rpos][1] = data[i][0];

 // same value

 result.data[rpos][2] = data[i][2];

 }

 // the above method ensures

 // sorting of transpose matrix

 // according to row-col value

 return result;

 }

 void multiply(sparse_matrix b)

 {

 if (col != b.row)

 {

 // Invalid multiplication

 cout << "Can't multiply, Invalid dimensions";

 return;

DOWNLOADED FROM BATU-EXAMS.in

 }

 // transpose b to compare row

 // and col values and to add them at the end

 b = b.transpose();

 int apos, bpos;

 // result matrix of dimension row X b.col

 // however b has been transposed,

 // hence row X b.row

 sparse_matrix result(row, b.row);

 // iterate over all elements of A

 for (apos = 0; apos < len;)

 {

 // current row of result matrix

 int r = data[apos][0];

 // iterate over all elements of B

 for (bpos = 0; bpos < b.len;)

 {

 // current column of result matrix

 // data[,0] used as b is transposed

 int c = b.data[bpos][0];

 // temporary pointers created to add all

 // multiplied values to obtain current

 // element of result matrix

 int tempa = apos;

 int tempb = bpos;

 int sum = 0;

 // iterate over all elements with

 // same row and col value

 // to calculate result[r]

 while (tempa < len && data[tempa][0] == r &&

 tempb < b.len && b.data[tempb][0] == c)

 {

 if (data[tempa][1] < b.data[tempb][1])

 // skip a

 tempa++;

 else if (data[tempa][1] > b.data[tempb][1])

 // skip b

 tempb++;

DOWNLOADED FROM BATU-EXAMS.in

 else

 // same col, so multiply and increment

 sum += data[tempa++][2] *

 b.data[tempb++][2];

 }

 // insert sum obtained in result[r]

 // if its not equal to 0

 if (sum != 0)

 result.insert(r, c, sum);

 while (bpos < b.len &&

 b.data[bpos][0] == c)

 // jump to next column

 bpos++;

 }

 while (apos < len && data[apos][0] == r)

 // jump to next row

 apos++;

 }

 result.print();

 }

 // printing matrix

 void print()

 {

 cout << "\nDimension: " << row << "x" << col;

 cout << "\nSparse Matrix: \nRow\tColumn\tValue\n";

 for (int i = 0; i < len; i++)

 {

 cout << data[i][0] << "\t " << data[i][1]

 << "\t " << data[i][2] << endl;

 }

 }

};

// Driver Code

int main()

{

 // create two sparse matrices and insert values

 sparse_matrix a(4, 4);

 sparse_matrix b(4, 4);

 a.insert(1, 2, 10);

 a.insert(1, 4, 12);

DOWNLOADED FROM BATU-EXAMS.in

 a.insert(3, 3, 5);

 a.insert(4, 1, 15);

 a.insert(4, 2, 12);

 b.insert(1, 3, 8);

 b.insert(2, 4, 23);

 b.insert(3, 3, 9);

 b.insert(4, 1, 20);

 b.insert(4, 2, 25);

 // Output result

 cout << "Addition: ";

 a.add(b);

 cout << "\nMultiplication: ";

 a.multiply(b);

 cout << "\nTranspose: ";

 sparse_matrix atranspose = a.transpose();

 atranspose.print();

}

Output

Addition:

Dimension: 4x4

Sparse Matrix:

Row Column Value

1 2 10

1 3 8

1 4 12

2 4 23

3 3 14

4 1 35

4 2 37

Multiplication:

Dimension: 4x4

Sparse Matrix:

Row Column Value

1 1 240

1 2 300

1 4 230

DOWNLOADED FROM BATU-EXAMS.in

3 3 45

4 3 120

4 4 276

Transpose:

Dimension: 4x4

Sparse Matrix:

Row Column Value

1 4 15

2 1 10

2 4 12

3 3 5

4 1 12

Hash Tables

Hash tables are the data structures which favor efficient storage and retrieval of data elements

which are linear in nature.

Dictionaries:

• Dictionaries is a collection of data elements uniquely identified by field called Key.

A directory supports operations of search, insert and delete.

• A dictionary supports both Sequential and Random Access. A sequential access is the

process in which the data elements of the dictionary are ordered and accessed

according to the order of the process in which the data elements of the dictionary are

not accessed according to a particular order.

• Hash tables are ideal data structures for dictionaries.

Hash Search:

• Hash selection is a search in which the key, through an algorithmic function,

determines the location of the data.

• Hashing it is a key to address transformation in which the keys map to addresses in a

list.

 Figure: Hash Search

Hash
function

Key Address

DOWNLOADED FROM BATU-EXAMS.in

Hash Functions:

• A hash function is a mathematical function which maps a given key of the dictionary

to its corresponding location in the storage table (known as hash table).

• The process of mapping the keys to their respective position in hash table is called as

Hashing.

Figure: Hash Search

• The choice of the hash function plays a significant role in the performance of the hash

table. It is therefore essential that a hash function satisfies following characteristics:

Characteristics of Hash Functions:

• Easy and quick to compute.

• Even distribution of keys across the hash table.

• A hash function must minimize collision.

Basic Definitions of Hashing:

• Synonyms: The set of Keys that hash to the same location in our list is called as

synonyms.

• Collision: Collision is the event that occurs when a hashing algorithm produce an

address for an insertion key and that address is already occupied.

• Home Address: The address produced by the hashing algorithms is known as

Home address.

• Prime Area: The memory that contains all of the home addresses is known as the

prime area.

• Probe: Each calculation of an address and test for success is known as probe.

• Bucket: A hash table uses a hash function to compute an index into an array of

buckets or slots, from which the desired value can be found.

• Overflow: An overflow occurs when the home bucket for a new pair (key, element)

is full.

• Open Hashing: In open hashing, keys are stored in linked lists attached to cell of

a hash table.

• Closed Hashing: In closed hashing, all keys are stored in linked lists attached to

cell of a hash table.

001 Aakash

002 Rekha

-

-

-

-

005 Lalita

-

-

-

-

-

-

007 Brijesh

-

-

-

-

-

-

100 Sachin

Hash

function

1 0 0 0 0 2

1 0 0 0 0 5

1 0 0 1 0 0

2

5

100

Keys Address

DOWNLOADED FROM BATU-EXAMS.in

• Load Density/Load Factor: The loading density or loading factor of a hash table

is a = n/(sb)

• s is the number of slots.

• b is the number of buckets.

Issues in Hashing

Following are some basic issues which are consider while hashing:

• Computing the hash function.

• Collision Resolution: Algorithm and data structure to handle two keys that hash to

the same index.

• Equality Test: Method for changing whether two keys are equal.

Properties of Good Hashing Function

Hash functions should have the following properties:

• Fast computation of the hash value (O(1)).

• Hash value should be distributed (nearly) uniformly:

o Every hash value (cell in the hash table) has equal probability.

o This should hold even if keys are non-uniformly distributed.

• The goal of a hash function is: ‘disperse’ the key in an apparently random way.

• A hash function must minimize collisions.

Forms of Hashing Data Structure

(1) Linear Open Addressing: It allows any number of records to be stored, because the

space is dynamic.

Figure: Linear Open Addressing

 Address List of Elements

DOWNLOADED FROM BATU-EXAMS.in

(2) Linear Closed Addressing: It uses a fixed space for storage and hence this limits

the size of hash table.

1

3

6

Figure: Linear closed addressing

 In this case maximum 7 elements can be stored as array size is only 7 and that is fixed.

Direct Address Tables

• Direct Address Table is a data structure that has the capability of mapping records to

their corresponding keys using arrays. In direct address tables, records are placed

using their key values directly as indexes. They facilitate fast searching, insertion and

deletion operations.

• We can understand the concept using the following example. We create an array of

size equal to maximum value plus one (assuming 0 based index) and then use values

as indexes. For example, in following diagram key 21 is used directly as index.

 T:

Figure: Direct address table

20

21

22

Key = 21
data for key = 21

DOWNLOADED FROM BATU-EXAMS.in

Advantages:

• Searching in O(1) Time: Direct address tables use arrays which are random access

data structure, so, the key values (which are also the index of the array) can be easily

used to search the records in O(1) time.

• Insertion in O(1) Time: We can easily insert an element in an array in O(1) time.

The same thing follows in a direct address table also.

• Deletion in O(1) Time: Deletion of an element takes O(1) time in an array. Similarly,

to delete an element in a direct address table we need O(1) time.

Limitations:

• Prior knowledge of maximum key value.

• Practically useful only if the maximum value is very less.

• It causes wastage of memory space if there is a significant difference between total

records and maximum value.

Hashing can overcome these limitations of direct address tables.

How to Handle Collisions?

Collisions can be handles like hashing. We can either use chaining or open addressing to

handle collisions. The only difference from hashing here is, we do not use hash function

to find the index. We rather directly use values as indexes.

Hash Functions

Figure: Basic Hashing Techniques.

(1) Direct Hashing:

In direct hashing, address for a key is generated without any algorithmic

manipulation. Therefor the data structure must contain an address for every possible

key.

Example:

Hashing

methods

Direct Modulo

Division

Midsquare Rotation

Subtraction Digit

Extraction

Folding Random

Generations

DOWNLOADED FROM BATU-EXAMS.in

A small organization has 100 employees. Each employee is assigned an employee.

Each employee is assigned an employment number between 1 to 100. Hence, we

create an array of 100 employee records; the employee umber can be directly used as

the address of any individual record.

Figure: Hash Function.

(2) Subtraction Method:

Sometimes we have keys that are consecutive but do not start from one. This method

is simple and it guarantees no collisions. Limitations is this method can be used for

small lists in which the keys map to a densely filled list.

Example: Consider a compony has 100 employees, but their employee number start

from 1000 up to 1100 consecutively. Then we use very simple hashing function that

subtracts 1000 from the key to determine the address.

(3) Modulo-Division Method/Division Remainder:

• This method divides the key by an array or bucket size and uses the reminder

plus one for the address.

 Address = (key % list size) + 1؞

• A list size that is a prime number produces fewer collisions than other list

sizes.

Example: Suppose we have 300 employees. The first prime number greater than

300 is 307. We therefore choose 307 as our list size.

 Employee number – 121267؞

 3 = 1 + 2 = 1 + (307 % 121267)؞

(4) Digit Extraction Method:

Using digit extraction, selected digits are extracted from the key and used as the

address.

Example: 379452 -> 394

 121267 -> 112

 378845 -> 388

 160252 -> 102

 045128 -> 051

001 Aakash

002 Rekha

-

-

-

-

005 Lalita

-

-

-

-

-

-

007 Brijesh

-

-

-

-

-

-

100 Sachin

Hash

function

1 0 0 0 0 2

1 0 0 0 0 5

1 0 0 1 0 0

2

5

100

Keys Address

DOWNLOADED FROM BATU-EXAMS.in

(5) Midsquare Method:

Key is squared and the address is selected from the middle of the squared number.

Example: 9452 * 9452 = 89340304

 Address is 3403

(6) Folding Method:

There are 2 folding methods:

a) Fold Shift: The key value is divided into parts whose size matches the size

of the required address. Then the left and right parts are shifted and added

with middle part.

Example: Suppose we have 3-digit addresses and key is 123456789

 1 2 3

 + 4 5 6

 (1) 3 6 8

Discard (1) address is 368.

b) Fold Boundary:

Left and right numbers are folded on a fixed boundary between them and the

center number. This results in the two outside values being reversed.

Example: Suppose we have 3 digit addresses and key are 123456789.

 3 2 1 -> Reversed digits of 123

 + 4 5 6

 + 9 8 7 -> Reversed digits of 789

 (1) 7 6 4

Discard (1). So, address is 764.

(7) Rotation Methods:

Rotation method is incorporated in combination with other hashing methods. It is

most useful when keys are assigned serially, such as we often see in employee

numbers and part numbers.

Example:

Original Key Rotation Rotated Key

6 0 0 1 0 1 6 0 0 1 0 6 0 0 1 0

6 0 0 1 0 2 6 0 0 1 0 6 0 0 1 0

6 0 0 1 0 3 6 0 0 1 0 6 0 0 1 0

6 0 0 1 0 4 6 0 0 1 0 6 0 0 1 0

(8) Pseudorandom Method:

The key used as the seed in pseudorandom number generator and the random

number then scaled into the possible address range using modulo division. Common

random generator is Y = ax + c.

Example: Consider a = 17 and c = 7. Also consider list size is 307. Key is 121267.

 y = ((17 * 121267) + 7) % 307 + 1 ؞

DOWNLOADED FROM BATU-EXAMS.in

 y = (2061539 + 7) % 307 + 1

 y = (2061546 % 307) + 1

 y = 41 + 1

 y = 42

 .Address is 42 ؞

(9) Multiplicative Hash Function:

Example:

 H(k) = floor (p * fractional part of key * A)

 Where Example

 P = constant integer

 A = Constant real number

 k = 107, p = 50,

 A = 0.61803398987

 H(k) = floor (50 * (107 * 0.61803398987))

 = floor (3306.4818458045)

 H(k) = 3306

OPEN Addressing

In Open addressing when a collision occurs, the home area addresses are searched for an

unoccupied element where the new data can be placed.

(1) Linear Probe:

(a) Linear Probing without Chaining:

When collision occurs, we resolve the collision by finding the next empty

cell.

Example: Keys 3, 33, 42, 63, 89, 45, 93

Hash function -> key % 10

 Empty After

3

After

33

After

42

After

63

After

89

After

45

After

93

0 - - - - - - - -

1 - - - - - - - -

2 - - - 42 42 42 42 42

3 - 3 3 3 3 3 3 3

4 - - 33 33 33 33 33 33

5 - - - - 63 63 63 63

6 - - - - - - 45 45

7 - - - - - - - 93

8 - - - - - - - -

9 - - - - - 89 89 89

(b) Linear probing with Chaining (without replacement):

Excessive collisions can be dealt by means of chaining. All the records

mapped to same location are stored in a chain.

Example: Keys – 3, 33, 42, 63, 89, 45, 93

Hash function => key % 10

DOWNLOADED FROM BATU-EXAMS.in

Index Key Chain

0 - -1

1 - -1

2 - -1

3 - -1

4 - -1

5 - -1

6 - -1

7 - -1

8 - -1

9 - -1

Index Key Chain

0 - -1

1 - -1

2 42 -1

3 3 4

4 33 5

5 63 6

6 45 -1

7 93 -1

8 - -1

9 89 -1

PERFECT Hashing

• A Perfect hash function for a set S is a hash function that maps distinct

elements into S to a set of integers, with no collisions, in mathematical terms,

it is an injective function.

• Perfect hash function may be to implement a lookup table with constant worst-

case access time. A perfect hash function has many of the same applications

as other hash functions, but with the advantage that no collision resolution has

to be implemented.

• A perfect hash function for a specific set S that can be evaluated in constant

time, and with values in a small range, can be found by a randomized

algorithm in a number of operations that is proportional to the size of S. The

original construction of Fredman, Kolmos & Szemeredi (1984) uses a two-

level scheme to map a set S of n elements to a range of O(n) indices, and then

map each index to a range of hash values.

• The first level of their construction chooses a large prime p (larger than the

size of the universe from which S is drawn), and a parameter k, and maps each

element x of S to the index.

-1 shows there is no chaining yet.

Here 3, 33, 63 and 93 supposed to be mapped at location

3. Hence all these are chained by index number at chain

column.

Index of 33

Index 0f 63

Index of 93

DOWNLOADED FROM BATU-EXAMS.in

• If k is chosen randomly, this step is likely to have collisions, but the number

of elements ni that are simultaneously mapped to the same index i is likely to

be small.

• The second level of their construction assigns disjoint ranges of O(ni2)

integers to each index i. IT uses a second set of linear modular functions, one

for each index I, to map each member x of S into the range associated with

g(x).

• As Fredman, Kolmos, & Szemeredi (1984) show, there exists choice of the

parameter k such that the sum of the lengths of the ranges for the n different

values of g(x) id O(n).

• Additionally, for each value of g(x), there exits a linear modular function that

maps the corresponding subset of S into the range associated with that value.

Both k, and the second level functions for each value of g(x), can be found in

polynomial time by choosing values randomly until finding one that works.

• The hash function itself requires storage space O(n) to store k, p, and all of the

second-level linear modular functions. Computing the hash value of a given

key x may be performed in constant time by computing g(x), looking up the

second-level function associated with g(x), and applying this function to x.

• A modified version of this two-level scheme with large number of values at

the top level can be used to construct a perfect hash function that maps S into

a smaller range of length n + o(n).

DOWNLOADED FROM BATU-EXAMS.in

Made by batuexams.com

at MET Bhujbal Knowledege City

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

